How did aging evolve? Some evolutionary theories invoke tradeoffs between maintenance/repair and reproduction. Others postulate that genes that cause age-related decline can be positively selected, so long as these same genes confer a fitness advantage early in life.

A common feature of these theories is that they operate at the level of the individual organism, rather than the species. Models based on group selection usually have logical problems. For example, suppose that aging evolved in order to eliminate post-reproductive old organisms to preserve resources for the reproductively competent young. This is circular: Why are the old organisms were post-reproductive in the first place? i.e., the model presupposes some age-related decline in organ system function in order to rationalize the evolution of aging.

OK, so suppose that the old remain fertile, but eliminate themselves to avoid competition with their own offspring; reproductive senescence then evolves later since there’s no positive selection pressure for maintaining reproductive function over the long term. Problem: What’s the point? If both old and young are making copies of the same genes, there’s no fitness advantage in eliminating the old — especially in light of the fact that most of the offspring’s competition would be coming not from their own parents and grandparents but from more distantly related members of the same species. (And in sexual organisms, you are a better copy of your own genes than your offspring, who have only half of your alleles. Far better to stick around and show the kids how it’s done, than ride off into the sunset to clear the path for these dilutions of oneself.)

Group selection of aging is also vulnerable to “defectors” — mutants who take advantage of the situation to spread their own selfish genes. Suppose that there is some species-level advantage to aging, such that it emerges as a positively selected trait. As organisms age, they actively decrease their own viability in such a way that they have an increased mortality. The species benefits (somehow) at the cost of the individual fitness of these “cooperators.” But then along comes a defector mutant, who doesn’t age and continues to reproduce while the cooperators are pushing up the daisies. Unless the species-level advantage is overwhelming, it’s clear that the defector trait will spread within the population.

Ultimately, then, the reason why group selection models don’t satisfactorily explain the evolution of aging is that it’s hard to imagine a scenario in which a species-level advantage conferred by aging could outweigh the organism-level advantage conferred by not aging.

Such a scenario might now have been imagined. Mitteldorf and Pepper postulate that senescence could have evolved in order to prevent the spread of disease epidemics in populations:

Senescence as an adaptation to limit the spread of disease

Population density is a robust measure of fitness. But, paradoxically, the risk of lethal epidemics which can wipe out an entire population rises steeply with population density. We explore an evolutionary dynamic that pins population density at a threshold level, above which the transmissibility of disease rises to unacceptable levels. Population density can be held in check by general increases in mortality, by decreased fertility, or by senescence. We model each of these, and simulate selection among them. In our results, senescence is robustly selected over the other two mechanisms, and we argue that this faithfully mirrors the action of natural selection. This picture constitutes a mechanism by which senescence may be selected as a population-level adaptation in its own right, without mutational load or pleiotropy. The mechanism closely parallels the ‘Red Queen hypothesis’, which is widely regarded as a viable explanation for the evolution of sex.

OK, so, how might this work?

Epidemiology is, by definition, a population-level issue, and there’s already precedent for selection pressure based on disease susceptibility guiding evolution at the species level (e.g., the diversity of major histocompatibility loci).

The trick is to get the pressures at the individual and group levels to point in the same direction: If I (an organism) am more susceptible than average to a given disease, and that susceptibility has a genetic component, then my closest relatives (who share most of my genes) are likelier than the general population to be susceptible as well. Therefore, my continued existence poses a risk for my progeny, because I represent one more potential host for a pathogen that might infect them – potentially killing us all and ending the line altogether. One way to deal with that problem is to eliminate hosts, and the authors’ model shows that senescence is a reasonable way to achieve that end.

ResearchBlogging.orgMitteldorf, J., & Pepper, J. (2009). Senescence as an adaptation to limit the spread of disease Journal of Theoretical Biology DOI: 10.1016/j.jtbi.2009.05.013