Cells tend to produce unwanted protein aggregates and other molecular refuse slightly faster than they can get rid of it, resulting in a time-dependent accumulation of potentially toxic cellular garbage. This, in turn, can cause an age-dependent loss of cellular viability, which is (in certain contexts) a fair operational definition of aging.

How can cells deal with their garbage? Protein aggregates are both sticky and insoluble, making it hard for cellular machinery to deal with them at an enzymatic level. If the gunk can’t be eliminated, however, it might still be possible to move it around in a useful way. Specifically, at mitosis, the cell could make sure that all the potentially toxic aggregates stay in one of the progeny. To illustrate the argument I’ll turn to the words of the estimable Alex Palazzo:

One approach is to distribute everything equally amongst your two offspring. …

A second approach is to give all the crap to one of the two new cells and keep the other one pristine. Lets call these two cells the crap cell and the pristine cell. What’s the result of this second strategy? Using our crap metric from above, the first cell accumulates 10 units of garbage over its lifetime and then gives it all to one offspring, the crap cell, and none to the other offspring, the pristine cell. Those cells then grow and by the time they divide each second generation cells have made 10 units of additional crap each. The crap cell has 20 units the pristine cell 10. The two cells divide and dump all their garbage on one of their offsprings. One cell starts with 20 units of crap, one cell with 10 units and two cells are again crap free. The end result of this strategy? Part of your descendents will become more and more decrepit as they fill up with crap, while others remain pristine.

The crap cell (I love this nomenclature) will become inviable sooner under this strategy, but the alternative would be a symmetric division strategy in which all descendants accumulate garbage, ultimately causing the extinction of the entire lineage. The idea here is that assuming certain values for adjustable parameters re: the rate of garbage accumulation and the effect of garbage level on reproductive fitness, this can be an advantageous strategy to ensure reproductive success. Both single-celled yeast and mammalian stem cells employ this asymmetric strategy in order to preserve the viability of an indefinitely dividing lineage.

In yeast, the crap cell is called the “mother”; the pristine cell is called the “daughter” — mom accumulates garbage of various kinds, both protein aggregates and rDNA circles. When the mother is ready to divide, a bud forms at a specific site on her cell wall, defined by a set of macromolecular complexes that determine cellular polarity. Liu et al. have demonstrated that the daughter cell is using some of the same polarity-determining machinery (the “polarisome”) to actively transport protein aggregates back into the mother:

The Polarisome Is Required for Segregation and Retrograde Transport of Protein Aggregates

The paradigm sirtuin, Sir2p, of budding yeast is required for establishing cellular age asymmetry, which includes the retention of damaged and aggregated proteins in mother cells. By establishing the global genetic interaction network of SIR2 we identified the polarisome, the formin Bni1p, and myosin motor protein Myo2p as essential components of the machinery segregating protein aggregates during mitotic cytokinesis. Moreover, we found that daughter cells can clear themselves of damage by a polarisome- and tropomyosin-dependent polarized flow of aggregates into the mother cell compartment. The role of Sir2p in cytoskeletal functions and polarity is linked to the CCT chaperonin in sir2Δ cells being compromised in folding actin. We discuss the findings in view of recent models hypothesizing that polarity may have evolved to avoid clonal senescence by establishing an aging (soma-like) and rejuvenated (germ-like) lineage.

Note the role for Sir2p, the founding member of the sirtuin family of longevity assurance genes: Sir2p is required, via another protein’s activity, for the normal folding of actin, the cytoskeletal protein from which the daughter-mother transport cable is built. It’s an indirect interaction, and more complex than I’m making it out to be here. Nonetheless, it is satisfying for those of us looking for unifying theories in aging that one of the most widely studied proteins in lifespan regulation is involved in the deep connection between polarity and aging.

I’ll close with a few questions:

  • Why can’t the mother cell export the aggregates? One of our initial premises was that aggregates are biochemically hard to handle, which is why they accumulate rather than being degraded. But now we know that cells can bundle aggregates onto actin cables and move them around — why not sort the aggregates into vesicles or membrane blebs and dispose of them? Granted, in order to export an aggregate out of the cell, it would have to cross a membrane, but this would be no more difficult topologically than mitophagy. The obvious (and trivial) answer to this question is “because it didn’t evolve that way,” but I’m curious to know whether there’s some compelling reason why it couldn’t have evolved that way.
  • How do symmetrically dividing cells overcome this problem? In order to exploit asymmetric division, one must first establish polarity. The argument above about the rate of garbage accumulation would seem to apply equally well to non-polarized cells like bacteria – why, then, do clonal lineages of symmetrically dividing cells not invariably go extinct? Maybe the cells that we think are symmetric are secretly asymmetric, with a crap/pristine segregation that has yet to be uncovered. Or maybe the symmetric cells know something about garbage disposal that we don’t. In either case, there’s something important to learn that might help us keep mammalian cells youthful.

ResearchBlogging.orgLiu, B., Larsson, L., Caballero, A., Hao, X., Öling, D., Grantham, J., & Nyström, T. (2010). The Polarisome Is Required for Segregation and Retrograde Transport of Protein Aggregates Cell, 140 (2), 257-267 DOI: 10.1016/j.cell.2009.12.031